New theory describes liquid droplet behavior on solid surfaces

Japanese researchers have succeeded in deriving a theoretical formula that quantitatively predicts the wetting and spreading behavior of droplets that collide with the flat surface of a solid material. Although the behavior ...

Microscopic rowing—without a cox

Many different types of cell, including sperm, bacteria and algae, propel themselves using whip-like appendages known as flagella. These protrusions, about one-hundredth of a millimetre long, function like tiny oars, helping ...

New technique controls fluids at the nanoscale

(Phys.org) —Researchers at Swinburne University of Technology have revealed a revolutionary method of pumping fluid at the nanoscale level that has potential use for desalinating water and lab-on-a-chip devices.

Researchers explain emergence of bacterial vortex

When a bunch of B. subtilis bacteria are confined within a droplet of water, a very strange thing happens. The chaotic motion of all those individual swimmers spontaneously organizes into a swirling vortex, with bacteria ...

Chasing the black holes of the ocean

According to researchers from ETH Zurich and the University of Miami, some of the largest ocean eddies on Earth are mathematically equivalent to the mysterious black holes of space. These eddies are so tightly shielded by ...

page 2 from 3