Quantum fluctuations sustain the record superconductor

**Quantum fluctuations sustain the record superconductor
Crystal structure of the Fm-3m phase of LaH10, where a highly symmetric hydrogen cage encloses the lanthanum atoms. In the top a sketch of the complex classical energy landscape is shown, where many minima are present. On the other hand, in the bottom we see a sketch of the completely reshaped much simpler quantum energy landscape, where only one minimum survives. Credit: Centre for Materials Physics

Calculations performed by an international team of researchers from Spain, Italy, France, Germany, and Japan show that the crystal structure of the record superconducting LaH10 compound is stabilized by atomic quantum fluctuations. This result suggests that superconductivity approaching room temperature may be possible in hydrogen-rich compounds at much lower pressures than previously expected with classical calculations. The results are published today in Nature.

Reaching is one of the biggest dreams in physics. Its discovery would bring a technological revolution by providing electrical transport with no loss, ultra-efficient electrical engines or generators, as well as the possibility of creating huge magnetic fields without cooling. The recent discoveries of superconductivity first at 200 kelvin in and later at 250 kelvin in LaH10 have spurred attention to these materials, bringing hopes for reaching room temperatures soon. It is now clear that hydrogen-rich compounds can be . At least at high pressures: both discoveries were made above 100 gigapascals, one million times .

The 250 kelvin (-23ÂșC) obtained in LaH10, the usual temperature at which home freezers work, is the hottest temperature for which superconductivity has ever been observed. The possibility of high-temperature superconductivity in LaH10, a superhydride formed by lanthanum and hydrogen, was anticipated by crystal structure predictions back in 2017. These calculations suggested that above 230 gigapascals a highly symmetric LaH10 compound (Fm-3m space group), with a hydrogen cage enclosing the lanthanum atoms (see figure), would be formed. It was calculated that this structure would distort at lower pressures, breaking the highly symmetric pattern. However, experiments performed in 2019 were able to synthesize the highly symmetric compound at much lower pressures, from 130 and 220 gigapascals, and to measure superconductivity around 250 kelvin in this pressure range. The crystal structure of the record superconductor, and thus its superconductivity, remained therefore not entirely clear.

Now, thanks to the new results published in Nature, we know that atomic quantum fluctuations "glue" the symmetric structure of LaH10 in all the pressure range in which has been observed. In more detail, the calculations show that if atoms are treated as classical particles, that is, as simple points in space, many distortions of the structure tend to lower the energy of the system. This means that the classical energy landscape is very complex, with many minima (see figure), like a highly deformed mattress because many people are standing on it. However, when atoms are treated like quantum objects, which are described with a delocalized wave function, the energy landscape is completely reshaped: only one minimum is evident (see figure), which corresponds to the highly symmetric Fm-3m structure. Somehow, get rid of everybody in the mattress but one person, who deforms the mattress only in one single point.

Furthermore, the estimations of the critical temperature using the quantum energy landscape agree satisfactorily with the experimental evidence. This supports further the Fm-3m high-symmetry as responsible for the superconducting record.

More information: Ion Errea et al. Quantum crystal structure in the 250-kelvin superconducting lanthanum hydride, Nature (2020). DOI: 10.1038/s41586-020-1955-z

Journal information: Nature

Provided by Centre for Materials Physics

Citation: Quantum fluctuations sustain the record superconductor (2020, February 6) retrieved 18 April 2024 from https://phys.org/news/2020-02-quantum-fluctuations-sustain-superconductor.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Researchers discover new evidence of superconductivity at near room temperature

624 shares

Feedback to editors