Heating up tumors could make CAR T therapy more effective, study finds

tumor
Credit: CC0 Public Domain

A preclinical study led by scientists at the UCLA Jonsson Comprehensive Cancer suggests that heating solid tumors during CAR T-cell therapy can enhance the treatment's success.

The researchers found that when a heating technique called photothermal ablation was combined with the infusion of CAR T cells, it suppressed melanoma tumor growth for up to 20 days in mice. Among the mice that were treated with the combination, 33 percent were still tumor free after the 20-day mark.

T cells that have been genetically engineered with chimeric antigen receptor, or CAR, have successfully been used to treat many patients with lymphoma and leukemia. But CAR T cell therapy has been less successful for treating solid tumors because the tumors have a protective microenvironment, which makes it harder for the CAR T cells to break into the tumor and keep the T cells activated.

The UCLA scientists decided to test whether combining CAR T therapy with photothermal therapy could overcome that obstacle. Photothermal therapy is a minimally invasive technique that uses heat from laser energy to kill ; it is already being used to treat a variety of cancers and other medical conditions. The researchers tested a mild hyperthermia about 40 degrees Celsius (about 104 degrees Fahrenheit) to see if it could help enhance the CAR T cells to better attack the tumor.

The UCLA-led team tested the technique in mice that were injected with human melanoma tumors. A photothermal agent was injected into the tumors and then irradiated with the laser to heat them. Then, CAR T cells were injected intravenously. Raising the temperature of the laser to about 40 degrees Celsius helped expand blood vessels associated with the , enhancing T cell growth.

By enhancing the power of CAR T cell , the technique could eventually improve the prognosis for people with hard-to-treat . The researchers will continue testing the strategy in animals to optimize the heating duration and temperature before determining whether it can be tested on humans.

Zhen Gu, a professor of bioengineering at the UCLA Samueli School of Engineering, member of the Jonsson Cancer Center and member of the California NanoSystems Institute at UCLA, is the study's co-senior author. The paper's other senior author is Dr. Gianpietro Dotti of the University of North Carolina, Chapel Hill. The first author is Qian Chen, a postdoctoral researcher in Gu's laboratory.

The research is published in the journal Advanced Materials.

More information: Photothermal Therapy Promotes Tumor Infiltration and Antitumor Activity of CAR T Cells, Advanced Materials (2019). DOI: 10.1002/adma.201900192 , onlinelibrary.wiley.com/doi/fu … .1002/adma.201900192

Journal information: Advanced Materials
Citation: Heating up tumors could make CAR T therapy more effective, study finds (2019, March 27) retrieved 25 April 2024 from https://medicalxpress.com/news/2019-03-tumors-car-therapy-effective.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Combination approach shows promise for beating advanced melanoma

11 shares

Feedback to editors