Team study breaks Forster resonant energy transfer (FRET) distance limit

CCNY study breaks Förster resonant energy transfer (FRET) distance limit
Schematic of the long-range energy transfer between donor and acceptor molecules enhanced by the metamaterial. Credit: Visakh Menon

Using engineered nanocomposite structures called metamaterials, a City College of New York-led research team reports the ability to measure a significant increase in the energy transfer between molecules. Reported in the journal ACS Photonics, this breakthrough breaks the Förster resonance energy transfer (FRET) distance limit of ~10-20 nanometers, and leads to the possibility of measuring larger molecular assemblies.

And since FRET is a staple technique in many biological and biophysical fields, this new development could benefit pharmaceuticals, for instance.

"Energy between molecules plays a central role in phenomena such as photosynthesis and is also used as a spectroscopic ruler for identifying structural changes of molecules," said Vinod Menon, professor of physics in City College's Division of Science. "However, the process of transfer is usually limited in the over which it occurs, typically reaching 10 to 20 nm."

But in the study reported by Menon's research group in ACS Photonics, the authors demonstrate significant increase in the distance (> 15x) - reaching ~ 160 nm. This is accomplished by using a metamaterial that undergoes a topological transition.

The present work sets the stage for the use of spectroscopic rulers for studying a wide array of larger molecular systems which has not been previously possible using standard FRET technique.

Journal information: ACS Photonics

Citation: Team study breaks Forster resonant energy transfer (FRET) distance limit (2018, October 25) retrieved 25 April 2024 from https://phys.org/news/2018-10-team-forster-resonant-energy-fret.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Scientists develop new hybrid energy transfer system

63 shares

Feedback to editors