Genome sequencing of two Red Sea bacteria highlights their potential as industrial workhorses

Genome sequencing of two Red Sea bacteria highlights their potential as industrial workhorses
Similarity between the genomes of Bac48 and Bac84. Developed using data visualisation software, this figure shows synteny blocks between B. paralicheniformis Bac48 and B. paralicheniformis Bac84. Regions I, II and III are regions in B. paralicheniformis Bac48 that are missing in B. paralicheniformis Bac84. Credit: King Abdullah University of Science and Technology

Analyses of two bacterial strains in the Red Sea show they are enriched with gene clusters with potential to activate the synthesis of a wide range of industrially useful compounds, from novel antibiotics, anticancer agents and pigments to those useful for crop protection and the food industry.

Bacteria are a rich resource for bioactive chemical compounds and Magbubah Essack, of KAUST's Computational Bioscience Research Center, explains that able to withstand the Red Sea's highly saline, warm waters were anticipated to produce sturdy enzymes suited for industrial applications.

The team sequenced the genomes of two Bacillus species: B. paralicheniformis Bac48 collected from mangrove mud and B. paralicheniformis Bac84 collected from a microbial mat in the Rabigh Harbor Lagoon on Saudi Arabia's west coast. These two were compared with the documented genomes of three other B. paralicheniformis and nine B. licheniformis strains. The Red Sea strains had a higher number of associated with bioactive compound synthesis compared to the other Bacillus strains.

The team also report the first use of a computer program to identify a gene cluster in strains of the B. paralicheniformis species, in this case B. paralicheniformis Bac48, called trans-acyltransferase nonribosomal peptide synthetase/polyketide synthase, which is associated with the production of a specific group of .

"The findings affirm the premise that the Red Sea is a metabolically unique environment worthy of exploration for efficient microbes that can be used as biotechnological hosts," says computational bioscientist Ghofran Othoum, the first author of the study. "Also, our computational exploratory approach showed the strength of computer modeling methods in applications that require ranking biological systems for biotechnological use."

More information: Ghofran Othoum et al. In silico exploration of Red Sea Bacillus genomes for natural product biosynthetic gene clusters, BMC Genomics (2018). DOI: 10.1186/s12864-018-4796-5

Journal information: BMC Genomics

Citation: Genome sequencing of two Red Sea bacteria highlights their potential as industrial workhorses (2018, October 5) retrieved 24 April 2024 from https://phys.org/news/2018-10-genome-sequencing-red-sea-bacteria.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Superbugs jumping frequently between humans and animals

3 shares

Feedback to editors