How infectious bacteria hibernate through treatment

bacteria
Credit: CC0 Public Domain

Disease-causing bacteria can develop resistance to antibiotics which are then no longer effective in treating infection, yet they also have another tactic to avoid being killed off by antibiotic treatment. Some cells of the population quietly hide in a dormant state and wait for the danger to subside. Then they return to full function. For example, some urinary tract infections flare up again even after apparently successful treatment with antibiotics. Maja Semanjski, Katrin Bratl and Andreas Kiessling, led by Professor Boris Maček of the University of Tübingen's Proteom Centrum, and in collaboration with Elsa Germain and Professor Kenn Gerdes of the University of Copenhagen, have investigated such persistent forms of E. coli bacteria. Variations of an enzyme indicated which processes initiate the dormant state. This provides the researchers with possible starting-points at which to seek active substances to combat the dormant cells. The study is published in the latest edition of Science Signaling

When bacteria become insensitive to a drug, they are said to be resistant. That is the case when, for instance, bacteria can successfully expel antibiotics which have managed to enter their cell; when they become able to break down antibiotics using enzymes; or when they are able to replace one metabolic function blocked by antibiotics with some alternative. "Antibiotics are usually directed at the bacterial growth processes," Kenn Gerdes explains. He says the bacterium in its dormant phase is not resistant – it is merely temporarily able to tolerate the antibiotic by halting its growth. "Genetically, these bacteria have all the same features of the other bacteria in the population," and there are no recognizable rules as to which cells in the colony will survive in a dormant state, he adds. "It is rare and affects only one in ten thousand to one million cells. That makes it hard to investigate," Gerdes says.

Seeking causes for the dormant state

The formation of dormant states is seen as an attribute of persistence. Some clues were offered several years ago by bacteria which were isolated from patients with caused by Escherichia coli. They had mutations which gave them up to one thousand times greater persistence – without having any greater resistance to . A similar discovery was made in cystic fibrosis patients who were infected with the inflammatory Pseudomonas aeruginosa bacterium. One enzyme which can lead to the development of a dormant phase had mutated. It is called the HipA kinase (high persister gene A).

In the current study the research team compared the normal HipA kinase Escherichia coli bacteria with the bacteria which had the mutation. They conducted proteome analyses which recorded all proteins found in the bacterial cells. "We found that the normal and the mutated HipA kinase acted on a different stock of bacterial proteins, modifying them with phosphate," Boris Maček says. The researchers suspected that the HipA kinase reduces bacterial ' growth, initiating the dormant phase. "But the background is more complex than that," Maček adds. "Our investigations show that the suppression of growth and the persistence are the results of two different processes, because the mutated HipA kinase suppresses bacterial cell growth far less strongly than the normal one does, yet it raises the persistence many times over." This suggests new processes in the cell which future medicines will have to tackle to beat dangerous degrees of persistence in infectious .

More information: Maja Semanjski et al. The kinases HipA and HipA7 phosphorylate different substrate pools in Escherichia coli to promote multidrug tolerance, Science Signaling (2018). DOI: 10.1126/scisignal.aat5750

Journal information: Science Signaling

Citation: How infectious bacteria hibernate through treatment (2018, September 12) retrieved 23 April 2024 from https://phys.org/news/2018-09-infectious-bacteria-hibernate-treatment.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Daily dose of antibiotics helps bacteria develop multi-drug tolerance

109 shares

Feedback to editors