Two-pronged antibodies draw immune killers directly to cancer cells

Two-pronged antibodies draw immune killers directly to cancer cells
The structure of the ROR1-binding arm of the bi-specific antibody in complex with ROR1 was determined by X-ray crystallography. Credit: Rader lab, The Scripps Research Institute

Our immune system's arsenal of defenses usually protects us from cancer. But sometimes, cancer cells overwhelm or evade this elaborate defense system.

In the lab of biochemist and immunologist Christoph Rader, Ph.D., associate professor at The Scripps Research Institute in Florida, scientists have engineered a new type of anti-cancer antibody, one intended to enhance nature's cancer-fighting strategies by attracting killer T cells directly to cancer cells covered with a distinctive protein.

Dubbed "T-cell engaging bi-specific antibodies," these cancer combatants attack but leave untouched. That's thanks to their selective targeting system, which zeroes in on a protein found on the surface of several types of called ROR1, and also thanks to their talent for binding with T cells, the big guns of the immune system.

"Once the T cells are recruited and activated, they release cytotoxic molecules that penetrate the and kill them," Rader says. "Natural antibodies can't do this. You have to engineer them in a bi-specific fashion to do this."

The scientists' work is described in the article, "Potent and Selective Antitumor Activity of a T-Cell Engaging Bispecific Antibody Targeting a Membrane-Proximal Epitope of ROR1," appearing online May 29 in the journal Proceedings of the National Academy of Sciences.

Rader is particularly interested in applying his bi-specific antibodies to a type of with fewer treatment options, HER2-negative breast cancer.

"If you look at ROR1 expression in breast cancer, you see that the patients who are HER2 negative are often ROR1 positive," Rader says. "These might benefit."

Antibodies are proteins made by to attack specific targets like viruses, bacteria and cancers. A bi-specific antibody is a Y-shaped immune factor engineered to both bind with a specific disease target, and also to attract killer T cells, a type of white blood cell that destroys infected or dangerous cells.

ROR1 is an excellent target for a smart cancer-fighting system, Rader says, because it is seen only in mature cells that are malignant. Rader first discovered ROR1's activity in leukemia a decade ago while working at the National Cancer Institute.

"ROR1 is expressed during embryogenesis, and then it is tightly down-regulated after birth. It later reappears in both blood cancers and solid malignancies," Rader says.

It has been found on malignant cells including lung, breast, ovarian and blood-based cancers, Rader says.

"One of the most unique aspects of this bi-specific antibody is that it can work in so many different cancer indications," Rader says.

He credits first author Junpeng Qi, Ph.D., a postdoctoral associate at Scripps Research in Florida, with engineering a group of bi-specific antibodies that stay active in animal models for about five days—a feat compared with current approaches. The U.S. Food and Drug Administration has approved just one bi-specific antibody against cancer so far, against B-cell acute lymphoblastic leukemia. It stays active for a couple of hours, Rader says.

"Junpeng used a component of for this bi-specific antibody that gives it not only a larger size, but also the ability to be recycled and stay in the blood longer," Rader says. "They are not there eternally, though. You get rid of them eventually, which is important for avoiding systemic toxicity."

More information: Junpeng Qi et al, Potent and selective antitumor activity of a T cell-engaging bispecific antibody targeting a membrane-proximal epitope of ROR1, Proceedings of the National Academy of Sciences (2018). DOI: 10.1073/pnas.1719905115

Citation: Two-pronged antibodies draw immune killers directly to cancer cells (2018, May 30) retrieved 29 March 2024 from https://medicalxpress.com/news/2018-05-two-pronged-antibodies-immune-killers-cancer.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

'Double decker' antibody technology fights cancer

63 shares

Feedback to editors