Invisible, stretchable circuits to shape next-gen tech

Invisible, stretchable circuits to shape next-gen tech
The displays and touchscreens used in next-generation technologies will require transparent conductors that are soft, elastic, and highly stretchable. Credit: Soft Materials Laboratory, Carnegie Mellon University

Electrically conductive films that are optically transparent have a central role in a wide range of electronics applications, from touch screens and video displays to photovoltaics. These conductors function as invisible electrodes for circuit wiring, touch sensing, or electrical charge collection and are typically composed of transparent conductive oxides. But, they have a weakness.

Most are mechanically stiff. Stretching the inelastic material causes it to break apart and lose electrical functionality. This inability to support strain greatly limits the role of these existing for emerging applications in wearable computing, soft bioelectronics, and biologically-inspired robotics. The displays and touchscreens used in these next-generation technologies will require transparent conductors that are soft, elastic, and highly stretchable.

Carnegie Mellon University's Associate Professor of Mechanical Engineering Carmel Majidi and his research team have developed conductive thin-films that have the unique combination of properties needed for these next-generation technologies: , visual imperceptibility, low mechanical stiffness, and high elasticity.

Using a laser-based microfabrication technique, the team achieved these properties by coating the surface of a thin rubber film with a fine grid of metal (a eutectic alloy of gallium and indium, EGaIn) that is liquid at room temperature.

To demonstrate the usefullness of the material, the team created a system that monitors air quality and provides visual feedback on pollutant concentration using an electronic contact lens display. Credit: Soft Materials Laboratory, Carnegie Mellon University

The findings were published in Advanced Materials in a paper titled "Visually Imperceptible Liquid Metal Circuits for Transparent, Stretchable Electronics with Direct Laser Writing" by Chenfeng Pan, Kitty Kumar, Jianzhao Li, Eric J. Markvicka, Peter R. Herman, Carmel Majidi.

Majidi heads the Integrated Soft Materials Laboratory at Carnegie Mellon University.

More information: "Visually Imperceptible Liquid Metal Circuits for Transparent, Stretchable Electronics with Direct Laser Writing," Advanced Materials, DOI: 10.1002/adma.201706937

Journal information: Advanced Materials

Citation: Invisible, stretchable circuits to shape next-gen tech (2018, February 12) retrieved 19 April 2024 from https://phys.org/news/2018-02-invisible-stretchable-circuits-next-gen-tech.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Researchers engineer 'thubber,' a stretchable rubber that packs a thermal conductive punch

306 shares

Feedback to editors