Scientists create laser-activated superconductor

Scientists create laser-activated superconductor
Credit: AI-generated image (disclaimer)

Shining lasers at superconductors can make them work at higher temperatures, suggests new findings from an international team of scientists including the University of Bath.

Superconductors are materials that conduct electricity without and produce . They are used in medical scanners, super-fast electronic circuits and in Maglev trains which use superconducting magnets to make the train hover above the tracks, eliminating friction.

Currently superconductors only work at very , requiring liquid nitrogen or helium to maintain their temperature. Now scientists publishing in the prestigious journal Nature have found a way to make certain materials superconduct at higher temperatures.

The team, led by the Max Planck Institute for the Structure and Dynamics of Matter and including the Universities of Bath and Oxford, shone a laser at a material made up from potassium atoms and carbon atoms arranged in bucky ball structures and found it to still be superconducting at more than 100 degrees Kelvin—around minus 170 degrees Celsius.

The researchers hope these findings could lead to new routes and insights into making better superconductors that work at higher temperatures.

Superconducting at higher temperatures

Dr Stephen Clark, theoretical physicist at the University of Bath, worked with his experimental physicist colleagues to try to understand how superconductivity might emerge when the material is exposed to laser radiation.

He explained: "Superconductors currently only work at very low temperatures, requiring expensive cryogenics—if we can design materials that superconduct at higher temperatures, or even , it would eliminate the need for cooling, which would make them less expensive and more practical to use in a variety of applications.

"Our research has shown we can use lasers to make a material into a superconductor at much higher temperatures than it would do naturally. But having taken this first step, my colleagues and I will be trying to find other that can be coerced to work at even higher temperatures, possibly even at room temperature.

"Whilst this is a small piece of a very large puzzle, our findings provide a new pathway for engineering and controlling superconductivity that might help stimulate future breakthroughs."

More information: M. Mitrano et al. Possible light-induced superconductivity in K3C60 at high temperature, Nature (2016). DOI: 10.1038/nature16522

Journal information: Nature

Provided by University of Bath

Citation: Scientists create laser-activated superconductor (2016, February 8) retrieved 28 March 2024 from https://phys.org/news/2016-02-scientists-laser-activated-superconductor.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Phosphine as a superconductor? Sure, but the story may be complicated

42 shares

Feedback to editors