Gold-diamond nanodevice for hyperlocalised cancer therapy

Gold-diamond nanodevice for hyperlocalised cancer therapy

Precise targeting biological molecules, such as cancer cells, for treatment is a challenge, due to their sheer size. Now ,Taiwanese scientists have proposed an advanced solution, based on a novel combination of previously used techniques, which can potentially be applied to thermal cancer therapy. Pei-Chang Tsai from the Institute of Atomic and Molecular Sciences, at the Academia Sinica, Taipei, and colleagues just published in EPJ QT an improved sensing technique for nanometre-scale heating and temperature sensing. Using a chemical method to attach gold nanorods to the surface of a diamond nanocrystal, the authors have invented a new biocompatible nanodevice. It is capable of delivering extremely localised heating from a near-infrared laser aimed at the gold nanorods, while accurately sensing temperature with the nanocrystals.

The authors' lab specialises in fabricating bright fluorescent diamond nanocrystals. The paticularity of these nanocrystals is that they contain a high concentration of punctual colour centre defects. When exposed to green light, these centres emit a red fluorescent light, useful for sub-cellular imaging applications. Unlike ordinary fluorescent material, these centres can also be turned into hypersensitive nanoprobes to detect temperature and magnetic field, via optical manipulation and detection.

By introducing nanoparticles to the nanocrystal, the authors make it possible to convert the incoming laser light into extremely localised heat. These gold nanoparticles can therefore act as switchable nanoheaters for therapies based on delivering intense and precise heat to cancerous cells, using a laser as the energy source. The novelty of this study is that it shows that it is possible to use diamond nanocrystals as hypersensitive temperature sensors with a high spatial resolution - ranging from 10 to 100 nanometers - to monitor the amount of heat delivered to .

More information: EPJ Quantum Technology, 2:19, DOI: 10.1140/epjqt/s40507-015-0031-3

Provided by Springer

Citation: Gold-diamond nanodevice for hyperlocalised cancer therapy (2015, July 31) retrieved 26 April 2024 from https://phys.org/news/2015-07-gold-diamond-nanodevice-hyperlocalised-cancer-therapy.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Magnetic hyperthermia, an auxiliary tool in cancer treatments

17 shares

Feedback to editors