Lifelike lab-grown skin developed from human stem cells

Queensland researchers have become the first in Australia to use human stem cells to generate fully functioning skin tissue in a laboratory, a significant step toward better treatments for severe burns and wounds.

Unique manufacturing method produces more appealing vegan meat

Vegan food is often sidestepped due to its rubbery consistency. Food technology researchers at Lund University in Sweden have now developed a way to make vegan food more appetizing by using new combinations of raw materials. ...

Stem cell research paves way toward regenerating skeletal muscle

Researchers at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA are one step closer to developing stem cell therapies to regenerate skeletal muscle in humans. Working in mice, the UCLA ...

page 1 from 27

Stem cell

Stem cells are cells found in most, if not all, multi-cellular organisms. They are characterized by the ability to renew themselves through mitotic cell division and differentiating into a diverse range of specialized cell types. Research in the stem cell field grew out of findings by Canadian scientists Ernest A. McCulloch and James E. Till in the 1960s. The two broad types of mammalian stem cells are: embryonic stem cells that are isolated from the inner cell mass of blastocysts, and adult stem cells that are found in adult tissues. In a developing embryo, stem cells can differentiate into all of the specialized embryonic tissues. In adult organisms, stem cells and progenitor cells act as a repair system for the body, replenishing specialized cells, but also maintain the normal turnover of regenerative organs, such as blood, skin or intestinal tissues.

Stem cells can now be grown and transformed into specialized cells with characteristics consistent with cells of various tissues such as muscles or nerves through cell culture. Highly plastic adult stem cells from a variety of sources, including umbilical cord blood and bone marrow, are routinely used in medical therapies. Embryonic cell lines and autologous embryonic stem cells generated through therapeutic cloning have also been proposed as promising candidates for future therapies.

This text uses material from Wikipedia, licensed under CC BY-SA