Structural color ink: Printable, non-iridescent and lightweight

A new way of creating color uses the scattering of light of specific wavelengths around tiny, almost perfectly round silicon crystals. This Kobe University development enables non-fading structural colors that do not depend ...

Utilizing active microparticles for artificial intelligence

Artificial intelligence using neural networks performs calculations digitally with the help of microelectronic chips. Physicists at Leipzig University have now created a type of neural network that works not with electricity ...

Preparation of F-passivated ZnO for quantum dot photovoltaics

For photovoltaic power generation, pn junction is the core unit. The electric field in the junction can separate and transport the electron and the hole to negative and positive electrodes, respectively. Once the pn junction ...

Scientists explore the elasticity of colloidal suspensions

Experiments reveal that under the right conditions, the elasticity of colloidal suspensions will peak at a certain value, which depends both on the deformation applied to the material and the strength of attraction between ...

page 1 from 19

Colloid

A colloid is a type of chemical mixture where one substance is dispersed evenly throughout another. The particles of the dispersed substance are only suspended in the mixture, unlike a solution, where they are completely dissolved within. This occurs because the particles in a colloid are larger than in a solution - small enough to be dispersed evenly and maintain a homogenous appearance, but large enough to scatter light and not dissolve. Because of this dispersal, some colloids have the appearance of solutions. A colloidal system consists of two separate phases: a dispersed phase (or internal phase) and a continuous phase (or dispersion medium). A colloidal system may be solid, liquid, or gaseous.

Many familiar substances are colloids, as shown in the chart below. As well as these naturally occurring colloids, modern chemical process industries utilise high shear mixing technology to create novel colloids.

The subsequent table compares particle(s) diameters of colloids, homogeneous and heterogeneous mixture:

Thus, colloid suspensions are intermediate between homogeneous and heterogeneous mixtures. They are sometimes classified as either "homogeneous" or "heterogeneous" based upon their appearance.

The dispersed-phase particles have a diameter of between approximately 5 and 200 nanometers. Such particles are normally invisible to an optical microscope, though their presence can be confirmed with the use of an ultramicroscope or an electron microscope. Homogeneous mixtures with a dispersed phase in this size range may be called colloidal aerosols, colloidal emulsions, colloidal foams, colloidal dispersions, or hydrosols. The dispersed-phase particles or droplets are largely affected by the surface chemistry present in the colloid.

Some colloids are translucent because of the Tyndall effect, which is the scattering of light by particles in the colloid. Other colloids may be opaque or have a slight color.

Colloidal systems (also called colloidal solutions or colloidal suspensions) are the subject of interface and colloid science. This field of study was introduced in 1861 by Scottish scientist Thomas Graham.

This text uses material from Wikipedia, licensed under CC BY-SA