How to reset a diseased cell

In proof-of-concept experiments, researchers at University of California, San Diego School of Medicine demonstrate the ability to tune medically relevant cell behaviors by manipulating a key hub in cell communication networks. The manipulation of this communication node, reported in this week's issue of Proceedings of the National Academy of Sciences, makes it possible to reprogram large parts of a cell's signaling network instead of targeting only a single receptor or cell signaling pathway.

The potential clinical value of the basic science discovery is the ability to eventually develop techniques - drugs or gene therapy approaches, for example - that could slow or reverse the progression of diseases, such as cancer, which are driven by abnormal cell signaling along multiple upstream pathways.

"Our study shows the feasibility of targeting a hub in the cell signaling network to reset aberrant from multiple pathways and receptors," said senior author Pradipta Ghosh, MD, an associate professor of medicine.

Specifically, the UC San Diego team has engineered two peptides - protein fragments - to either turn on or turn off activity in a family of proteins called G proteins.

G protein-coupled receptors, commonly found on the surface of cells, enable cells to sense and respond to what is happening around them. About 30 percent of all prescription drugs affect cells via G .

Researchers, including members of the UC San Diego team, recently discovered that G proteins can also be activated inside cells - not just on cell membranes - by other receptors, including a protein called GIV. Its activity is implicated in cancer metastasis and other disease states. Both the "on" and "off" peptides were made from a piece of the GIV protein receptor.

In a series of cell culture experiments, the "on" peptides were shown to accelerate cells' ability to migrate after scratch-wounding, a process linked to wound healing. The "off" peptide, in contrast, reduced the aggressiveness of cancer cells and reduced the production of collagen by associated with liver fibrosis. In experiments with mice, the topical application of the "on" peptides helped skin wounds heal faster.

"The takeaway is that we can begin to tap an emerging new paradigm of G ," Ghosh said.

More information: Therapeutic effects of cell-permeant peptides that activate G proteins downstream of growth factors, Gary S. Ma, DOI: 10.1073/pnas.1505543112

Citation: How to reset a diseased cell (2015, May 1) retrieved 16 April 2024 from https://phys.org/news/2015-05-reset-diseased-cell.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Golgi trafficking controlled by G proteins

1083 shares

Feedback to editors