In-situ observations reveal how nanoparticle catalysts lower operating temperatures in fuel cells

Researchers from the NIST Center for Nanoscale Science and Technology and Arizona State University have used environmental transmission electron microscopy (ETEM) to explain the role of nickel nanoparticles in lowering the operating temperature of praseodymium doped ceria (PDC) anodes in solid-oxide fuel cells (SOFCs). 

These fuel cells are a promising technology for efficiently converting chemical fuels into electricity, and PDC-based have the potential to replace the more commonly used and yttria-stabilized zirconia anodes, which operate at higher temperatures (typically in excess of 1000 °C) that unfortunately cause the anodes to degrade. 

Nickel and PDC are being investigated as alternative anode materials because they operate at a relatively cool 500 °C to 700 °C, making the anodes more stable.  Using the ETEM, the researchers were able to visualize nanometer-scale structural and chemical changes occurring at the interface between the nickel and the PDC as a function of temperature in an atmosphere of dry hydrogen at 130 Pa, mimicking the partial pressure of hydrogen in a SOFC. 

Using energy-loss spectra, the researchers showed that the introduction of nickel nanoparticles lowered the reduction temperature of the PDC in a 20 nm-deep reduction zone around the interface between the two materials. 

The formation and size of the reduction zone is consistent with two possible mechanisms, each involving the spillover of ambient atomic hydrogen from the nickel to the PDC. 

The researchers believe that understanding and controlling how the nickel catalyze these lower-temperature reactions will enable the development of SOFCs that are both efficient and long-lived. 

More information: Direct observation of hydrogen spillover in Ni-loaded Pr-doped ceria, V. Sharma, et al, Catalysis Today 180, 2-8 (2012).

Citation: In-situ observations reveal how nanoparticle catalysts lower operating temperatures in fuel cells (2012, April 11) retrieved 19 April 2024 from https://phys.org/news/2012-04-in-situ-reveal-nanoparticle-catalysts-temperatures.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Self-cleaning anodes could facilitate cost-effective coal-powered fuel cells

0 shares

Feedback to editors